Reduced Beam Section Connection (SMRF)
Based on FEMA 350 (July 2000)
Serial #: 12345

Sample Calculation

Beam Properties of: W 16x57
- **d:** 16.4 in.
- **b:** 7.12 in.
- **w:** 57 lb.
- **Sx:** 92.2 in³
- **Ix:** 758 in⁴
- **Zx:** 105 in³
- **Rx:** 6.72 in.
- **Tf:** 0.715 in.
- **Sy:** 12.1 in³
- **Ly:** 43.1 in⁴
- **Zy:** 18.9 in³
- **Ry:** 1.6 in.

Column Properties of: W 14x53
- **d:** 13.9 in.
- **b:** 8.06 in.
- **w:** 53 lb.
- **Sx:** 77.8 in³
- **Ix:** 541 in⁴
- **Zx:** 87.1 in³
- **Rx:** 5.89 in.
- **Tf:** 0.66 in.
- **Sy:** 14.3 in³
- **Ly:** 57.7 in⁴
- **Zy:** 22 in³
- **Ry:** 1.92 in.

Steel Properties:
- **Steel Grade:** A992
- **Fy:** 50 ksi
- **Fu:** 65 ksi
- **Cpr:** 1.15
- **Ry:** 1.1

Frame Dimensions:
- **Beam Length (Column C/C):** 20.00 ft.
- **Avg. Floor Height:** 12.00 ft.

RBS Geometry of the Beam:
- **a:** Beam Flange x 0.60 = 4.25 in. From 4.272 in.
- **b:** Beam Depth x 0.75 = 12.25 in. From 12.300 in.
- **c:** Beam Flange x 0.20 = 1.50 in. From 1.424 in.
- **Cutout Radius:** 13.255 in.
- **X (Col. Face to RBS Dimension):** 10.38 in.
- **L' (RBS-RBS Dimension):** 17.11 ft.
- **RBS Section Modulus:** 59.22 in³
- **RBS Plastic Modulus:** 71.36 in³

Beam and column parameters
- **Beam depth less than 36 inches:** 16.4 in. OK
- **Beam weight less than 300 pounds:** 57 pounds OK
- **Beam's span to depth ratio greater than 7:** 13.79 OK
- **Beam's flange less than 1-3/4 inches thick:** 0.715 OK
- **Mom. capacity of BM's flange less than 0.7xMplastic:** 0.76xMplastic OK
- **Flange reduction less than 50% of flange width:** 57.9% remaining OK
- **Column's size W12x or W14x:** W 14x53 OK
- **Column width less than beam width:** 8.06 in. vs. 7.12 in. OK

Code Checks

Calculated Values
- **Vg:** 25.71 kip
 - Shear at the column face from factored gravity loads (Occurs at the Right side)
- **Vf:** 71.87 kip
 - Shear at the column face
- **Vp:** 68.02 kip
 - Shear at the RBS (Occurs at the Right side)
- **Mf:** 434.9 ft-kip
 - Probable plastic moment at the face of the column
- **Mc:** 474.3 ft-kip
 - Probable plastic moment at the center of the column
- **Mpr:** 376.1 ft-kip
 - Probable peak plastic hinge moment at RBS
- **ds:** 7.58%
 - Frame's drift increase factor due to RBS
Reduced Beam Section Connection (SMRF)

Based on FEMA 350 (July 2000)

Sample Calculation

<table>
<thead>
<tr>
<th>Mf</th>
<th>434.9 ft-kip</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_f</td>
<td>481.25 ft-kip</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.904 OK</td>
</tr>
</tbody>
</table>

Doubler Plates

<table>
<thead>
<tr>
<th>Srbs</th>
<th>59.22 in³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cy</td>
<td>0.72</td>
</tr>
<tr>
<td>Ry</td>
<td>1.1</td>
</tr>
<tr>
<td>t</td>
<td>0.561 in</td>
</tr>
</tbody>
</table>

FAIL - Doubler plates required

Continuity Plates

<table>
<thead>
<tr>
<th>Tcf1</th>
<th>1.211 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tcf2</td>
<td>1.187 in</td>
</tr>
<tr>
<td>Tcf</td>
<td>1.187 in</td>
</tr>
</tbody>
</table>

FAIL - Continuity plates required

Beam Flange

<table>
<thead>
<tr>
<th>$bf/2tf$</th>
<th>3.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>$52/sqrt(Fy)$</td>
<td>7.35</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.43 OK</td>
</tr>
</tbody>
</table>

Beam Web

<table>
<thead>
<tr>
<th>hc/tw</th>
<th>34.81</th>
</tr>
</thead>
<tbody>
<tr>
<td>$418/sq(fy)$</td>
<td>59.11</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.59 OK</td>
</tr>
</tbody>
</table>

Shear capacity of the beam

<table>
<thead>
<tr>
<th>V_f</th>
<th>71.87 kip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow. Shear</td>
<td>190.40 kip</td>
</tr>
<tr>
<td>Unity Check</td>
<td>0.38 OK</td>
</tr>
</tbody>
</table>

Moment capacity of the beam

| Allow. Moment | 393.75 ft-kip |

Actual moment to be less than this amount. Check with your frame analysis software.

Moment capacity of the beam at RBS

| Allow. Moment | 267.60 ft-kip |

Actual moment at RBS to be less than this amount. Check with your frame analysis software.
Reduced Beam Section Connection (SMRF)
Based on FEMA 350 (July 2000)

Sample Calculation

Gravity Loads at Beam

Distributed Loads

<table>
<thead>
<tr>
<th>Dead Load</th>
<th>Live Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.500 kip/ft</td>
<td>1.000 kip/ft</td>
</tr>
<tr>
<td>0.000 kip/ft</td>
<td>0.000 kip/ft</td>
</tr>
<tr>
<td>0.000 kip/ft</td>
<td>0.000 kip/ft</td>
</tr>
</tbody>
</table>

Point Loads

<table>
<thead>
<tr>
<th>Dead Load</th>
<th>Live Load</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.200 kip</td>
<td>2.300 kip</td>
<td>13.00 ft</td>
</tr>
<tr>
<td>1.500 kip</td>
<td>2.100 kip</td>
<td>16.00 ft</td>
</tr>
<tr>
<td>0.000 kip</td>
<td>0.000 kip</td>
<td>0.00 ft</td>
</tr>
</tbody>
</table>

Notes and Assumptions

1- Flexural demand on the girder due to gravity loads is less than about 30% of the girder’s capacity.
2- Strong Column - Weak Beam action is not checked.
3- For bracing and other requirements see FEMA 350.